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Abstract

Modern bike-sharing services provide data on daily users, including the number
of bikes that are rented each day, which this paper attempts to build an accurate
model for. The data sourced from the UCI Machine Learning Repository is cleaned,
visualized, and used as the foundation of multiple count regression models. Model
reduction and variable encoding lead to a final set of predictors to best describe the
relationship between weather behavior, time of year, seasons, and the number of rented
bicycles for any given day.

1 Introduction

In the greater Washington, D.C. metropolitan area, including Virginia and Maryland, a
common method of transportation for both residents and visitors is bike sharing. Bike
Sharing is analogous to booking a rental car, where one has an allotted amount of time before
returning the bike to a rental station. This system allows for an efficient and inexpensive
commute around the city, with over 700 stations and 5,400 bikes to date. These bikes also
provide more than just a simple transportation method to the public. Unlike other public
transportation systems that typically transport people en masse, bikes are able to create
accurate descriptions of both departure and arrival times and positions, logging a count
for every individual that uses them. Because of this, modeling bike-sharing frequency is of
interest to researchers and government officials. In this paper, we seek to accurately model
the counts of bikes rented on a given day based on weather conditions, time, and working
day status.

Our data is provided by three sources, mapped into one data set by the Laboratory of
Artificial Intelligence and Decision Support (LIAAD), University of Porto [FTG13], made
accessible by the University of California Irvine Machine Learning Repository. Bicyclists’
frequency is provided by the company Capital Bikeshare, the sharing system in the D.C.
area. Weather data is provided by i-weather.com. Lastly, holiday and working day schedules
are provided by the D.C. Department of Human Resources. The data will be based on bike
rentals, scheduling, and weather patterns from 2011 and 2012.

2 Descriptive Analysis

2.1 Data Description and Cleaning
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Our data set has 731 observations, continuous dates between January 1, 2011, and
December 31, 2012. Table 1 below discusses the 16 columns provided, as described in the
UCI Machine Learning Repository. Our goal is to now reduce the data of any unneeded and
or problematic columns and/or rows.

The data set has no missing values, thus no omitted observations. We have multiple
count columns, whereas we only need one for our response. Since cnt is the addition of
casual and registered, we will remove the latter two. We refer to a correlation heat map
to check for any multicollinearity. Since temp and atemp are almost perfectly correlated
with a correlation of 0.992, we remove atemp as well. Column workingday is also removed,
being dependent on weekday and holiday. Columns instant and dteday are not usable in
a regression setting. We do a simple data type transformation on our categorical variables
season, year, weekday, workingday, and weathersit, converting them into R factors. The
data set is reduced to nine predictors for our one response.

Column Description
instant Record Index
dteday Date
season Season (1:winter, 2:spring, 3:summer, 4:fall)
yr Sear (0: 2011, 1:2012)
mnth Month ( 1 to 12)
hr Hour (0 to 23)
holiday Whether Day is Holiday or Not
weekday Day of the Week
workingday If Day is Neither Weekend nor Holiday is 1, Otherwise is 0.

weathersit Weather Conditions1

temp Normalized temperature in Celsius.
atemp Normalized feeling temperature in Celsius.
hum Normalized humidity. The values are divided to 100 (max)
windspeed Normalized wind speed. The values are divided to 67 (max)
casual count of casual users
registered count of registered users
cnt count of total rental bikes including both casual and registered

Table 1: Data Description Table.
1

In the remaining 9 predictors, we first can observe the number of observations for our
categorical variables. Table 2 (Appendix) shows us the number of holidays recorded, which
comes out to 21 days out of the 731 recorded. Interestingly, our weather condition variable
does not have any observations for category four, corresponding to weather such as heavy
rain, snow, and fog. While this may bring rise to some concern about the recording of the
data, we will assume this to still be accurate. Regarding the other weather conditions, we
can see about 63% of days recorded were characterized by clear skies or partial clouds. Our
variable weekday is encoded between zero and six. Referring to our previous recorded dates,
we can confirm that the first day of the year 2011, the first row of the data set which is
encoded as 6 in the weekday column, was a Saturday. We will keep the encoding in mind
that Sunday is 0, Monday is 1, etc.

1Weather Conditions are encoded as the following : - 1: Clear, Few clouds, Partly cloudy, Partly cloudy -2:
Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist - 3: Light Snow, Light Rain + Thunderstorm
+ Scattered clouds, Light Rain + Scattered clouds - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist,
Snow + Fog
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2.2 Visualizing the Data

Visualizing the counts of registered and casual users, we expect the distribution to resemble
a Poisson distribution. However, in this case, we can see from the histogram that the data
resembles more of a symmetric distribution. This result foreshadows our model choice later
in this paper. For now, however, we continue with visualizing our variables.

Figure 1: We can see a lack of skew in the
distribution.

In the Appendix, we have multiple plots
comparing counts across predictor vari-
ables. The lowest concentration of bikes is
rented during the winter season. In Figure
2 (Appendix), the weather condition with
the lowest amount of bike rentals on average
was light rain with either thunderstorms or
scattered clouds, despite there being only 21
days throughout the two years where these
weather conditions occurred.

Our box plot in Figure 3 (Appendix)
shows the distributions of counts each day
of the week, separated by the year, 2011
or 2012. In 2011, the day with the high-
est median count was Tuesday, with a me-
dian count of 4094 bikes. The lowest median
count, though hard to tell from the box plot, is Sunday at 3614 bikes. The year 2012 had
the highest median count on Thursdays, 6331, and the lowest on Sundays, 5255. Comparing
the overall counts between the two years, the increase in 2012 bicycle counts for every day
of the week is very apparent.

3 Inferential Analysis

3.1 The Poisson Model

Our goal in this analysis is to find the true model for the counts of bicycles, so we begin
with the classic model for count data, the Poisson model. One of the essential assumptions
of this model is the variance of the response is approximately equal to the mean of the
response. Formally V ar(Y |X) = E(Y |X) However, this assumption is often not met, so
with modification: V ar(Y |X) = σ2E(Y |X) where σ2 is the dispersion parameter. For our
classical model to be satisfied, we want σ2 to be equal to 1. Any σ2 is greater than one is
over-dispersion.

We fit our model using the glm() function in R. Referring to the table (Appendix),
all of our predictors, including the intercept, are highly significant. Our reported AIC is
123, 694. Our dispersion for the model is 165.35, much too large. Thus, our assumption for
the classical Poisson model is greatly violated, so we search for a new model, one that can
account for large dispersion.

3.2 The Negative Binomial Model

With such a large dispersion, we fit a new model, the Negative Binomial, which, unlike the
Poisson, contains a dispersion parameter. We have with our new model such that:
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V ar(Y |X) =
ρ+ 1

ρ
E(Y |X)

where ρ = 1
σ2 . We build our new model using the glm.nb() function from the MASS library.

The summary output of this model reveals some of our previously significant variables are
no longer at significance level α = 0.05. specifically months June-December. Additionally,
our model AIC is over ten times smaller than our Poisson model, at 12, 156. The dispersion
of the new model comes out to 1.06, indicating a much closer mean-to-variance ratio.

We shift to finding a model with a minimized Bayesian Information Criterion since our
focus in this analysis is finding the true model rather than prediction. Performing a forward
and backward stepwise regression eliminates variables weekday and mnth. The reduced
model has main effects season, year, holiday, weather conditions, temperature, humidity,
and wind speed.

3.3 Expanding the Model with Interactions

With our remaining predictors, we aim for a better fit by adding interactions. We perform
a backward step-wise regression with only two-way interactions since three-way interactions
would be computationally expensive and challenging to interpret. Upon building such a
model, we keep all main effects with the addition of interactions season with temperature,
year with temperature, weather conditions with humidity, and weather conditions with
windspeed.

However, the main effect weather condition for light snow, light rain or thunderstorms
(weathersit = 3) as well as its interaction with humidity are not significant. Recall that
only 21 days of the 731 days in the data had these weather conditions. To address these
non-significant terms as well as create a simpler model, we encode the column weathersit,
where 1 will correspond to clear weather or partial clouds and 2 will correspond to all other
weather including but not limited to rain, snow, and fog.

Our new reduced model interaction model with the newly encoded variable, after a final
step-wise regression, is the following:

E(Y |X) = β0+β1Xseason2+β2Xseason3+β3Xseason4+β4Xyr1+β5Xholiday1+β6Xweathersit2

+β7Xtemp+β8Xhum+β9Xwindspeed+β10Xseason2:temp+β11Xseason3:temp+β12Xseason4:temp

+ β13Xyr1:temp + β14Xweathersit2:hum + β15Xweathersit2:windspeed (1)

Before we discuss our model in context, we will first move to sensitivity analysis, to
establish a few model diagnostics.

4 Model Diagnostics

We can compare the fit of our model by plotting the Pearson residuals next to our Deviance
residuals. If the distributions of both types of residuals are similar, this indicates a good
fit. Referring to the residual box plot in the Appendix, we can see this is exactly the case.
The box plots reveal some outliers in the data, which we will investigate next.

From the plots in Figure 3 (Appendix), we can see, in descending order, the observations
with the highest cook distance are 65, 668, and 725. The data from these observations is
in Table 4 below. Observation 65 was a day in March 2011 with very high humidity and
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a much lower-than-average count. No news reports or recordings can be found to account
for any event which could have caused this. Observation 668 was a day in October 2012
with an extremely small count (the median count in October was 7282 bikes whereas this
observation is only 22). Upon research, October 29th, 2012 was the day Hurricane Sandy
was along the coast near Washington D.C. There was both a government shutdown and
a state of emergency declared by the city’s mayor [Gol12]. Lastly, Observation 725 was
Christmas, leading to a not-surprising, lower count of bikes.

Lastly, we want to ensure that our model with interactions is truly better than our
original no-interaction model. We will compare these two models by performing a Likelihood
Ratio Test. We test the following hypothesis:

H0 : β10 = . . . = β15 = 0 vs Ha : β10 ̸= . . . ̸= β15 ̸= 0

Performing the LRT comparing these two models outputs a p-value that R truncates to zero,
allowing us to reject H0 and continue with our full model with interactions. We verify this
by comparing the fits of the two models by plotting their deviance residuals versus fitted
values. As seen in Figure 5 (Appendix), the interaction model is a much better fit.

5 Discussion

Our final model, Table 3 (Appendix), contains 15 predictors, including six interaction terms.
Four of the six interactions are with normalized temperature. Most of our main effects are
positive, except for windspeed, holidays, and humidity. However, all the interactions have a
negative effect on the count. For example, the increase in temperature as a main effect has a
strong increase in the count, with one of the largest coefficients. Combine this temperature
increase with the summertime, and we see an even larger decrease in count prediction. This
negative effect still exists with other seasons, though weaker. Overall, we see the main
effects with the largest increase in counts of bicycles rented are normalized temperature and
summertime.

Main effects windspeed and humidity do not have a large negative effect on counts.
However, when increasing on days where the weather conditions include rain, snow, or mist,
these negative effects increase in magnitude. In our modeling, the choice of the year has a
significant effect on the counts, whereas modeling for the year 2012 increases our expected
counts. This result agrees with our visual analysis earlier, as we saw a noticeable difference
between the two years. Holidays on average led to a slight decrease in the expected count
of bikes being rented.

6 Conclusion

As the amount of shared bikes increases on the road, it is important for the number of
bikes to be modeled accurately. In our analysis, we found that the best model was a
Negative-Binomial model, which accounted for the over-dispersion of the response. We
found predictors which involve the season, year, holidays, weather conditions, temperature,
humidity wind speed along with multiple interactions involving these variables accurately
modeled the count of bikes on the road on any given day.
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7 Appendix
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Table 2: Observations for Holiday(left) and Weather Condition (right).

Coefficient 95% CI Lower 95% CI Upper
(Intercept) 6.89 6.71 7.08

season2 0.85 0.66 1.03
season3 2.29 1.93 2.65
season4 0.83 0.65 1.00

yr1 0.64 0.54 0.74
holiday1 -0.19 -0.29 -0.09

weathersit2 0.74 0.49 0.99
temp 3.02 2.67 3.36
hum -0.24 -0.46 -0.02

windspeed -0.46 -0.78 -0.15
season2:temp -1.50 -1.94 -1.07
season3:temp -3.71 -4.29 -3.12
season4:temp -1.21 -1.68 -0.74

yr1:temp -0.35 -0.53 -0.16
weathersit2:hum -0.95 -1.26 -0.63

weathersit2:windspeed -1.14 -1.62 -0.66

Table 3: Coefficients of Final Model w/ 95% Confidence Intervals

season yr mnth holiday weekday weathersit temp hum windspeed cnt
65 1 0 3 0 0 2 0.38 0.95 0.34 605
668 4 1 10 0 1 2 0.44 0.88 0.36 22
725 1 1 12 1 2 2 0.29 0.73 0.17 1013

Table 4: Data of Outlier Points.
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Figure 2: Weather condition 3 has the lowest counts on average.

Figure 3: There is a noticeable difference between 2011 and 2012 in counts, regardless of
the day of the week.
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(a) Cooks Distance vs Observation Number (b) Residuals vs Leverage

Figure 4: Diagnostic Plots for Outliers

Figure 5: Comparing fit of Main Effects only (Left) to fit with Interactions added (right
.
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